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ARTIFICIAL NEURAL NETWORK TRAINING WITH 
CONJUGATE GRADIENTS FOR DIAGNOSING TRANSIENTS 

IN NUCLEAR POWER PLANTS 

. Jaques Reifman and Javier Vitela E. 

ABSTRACT - 
. - 

The method of conjugate gradients is used to expedite the 
learning process of feedforward multilayer artificial neural 
networks. The proposed method systematically determines both 
the learning and momentum parameters which are dynamically 
updated at each learning cycle. The learning parameter is obtained 
through a one-dimensional search that combines the iterative 
golden-section algorithm with an analytical cubic interpolation. 
The momentum parameter is obtained as conjugated directions are 
calculated at each learning cycle. By dynamically updating the 
learning and momentum parameters the method avoids the 
phenomenon of premature saturation of the network nodes and 
becomes less sensitive to the initial set of weights. The proposed 
method is compared with the standard backpropagation algorithm 
in the training of neural networks to classify transient events in 
nuclear power plants simulated by the Midland Nuclear Power 
Plant Unit 2 simulator. The comparison results indicate that the 
rate of convergence of the proposed method is much greater than 
the standard backpropagation reducing the number of learning 
cycles and the CPU time. The advantages of the method arc: inore 
noticeable and important for problems where the network 
architecture consists of a large number of nodes, the training data- 
base is large, and a tight convergence criterion is desired. In 
addition, the reasons for the premature saturation of the network 
nodes observed with the backpropagation algorithm are described 
and suggestions are made to eliminate this undesirable 
phenomenon. 



I. INTRODUCTION 

Artificial intelligence techniques in the form of artificial neural networks (ANNs) have 

recently been propo~ed"~ to provide support for nuclear power plant operations. The 

applications of neural networks in nuclear engineering are spread over a wide range of support 

areas including plant parameter e~timation,'.~ nuclear power plant transient event clas~ification,~ 

dynamic system identifi~ation,~ and thermal performance evaluation of power plants,' among 

many other applications. The reasons for the sudden large interest in the application of ANNs 

- are due to the recent popularization of the backpropagation (BP) neural network learning 

algorithm6 and its versatility in modeling the input-output relationships of complex nonlinear 

systems. 

Neural networks are composed of many nonlinear computational elements or nodes 

arranged in patterns reminiscent of biological neural nets. The computational nodes are 

connected via weights that are updated through training or learning rules to improve 

performance. Given a set of input-output patterns, an ANN is trained to model its relationships 

by updating the weights such that the prediction error between the network estimated output 

values and the known outputs is minimized. From the many different types of ANNs7 the one 

most frequently used, in general as well as in nuclear power plant applications, is the 

feedforward multilayer perceptron with the BP algorithm as its training mechanism for 

supervised learning. The standard BP algorithm is basically a gradient descent method and in 

spite of the fact that global optimization cannot be guaranteed it has proven to be a robust 

method for training ANNs. However, as with many gradient descent optimization methods, 

neural network training with the BP algorithm suffers from the following three 

convergence-related drawbacks: 

1. The convergence is slow and becomes slower the closer the algorithm gets to the 

optimum solution, 

2. The algorithm requires judicious selection of parameters, i.e., the learning and 

momentum parameters, to achieve reasonable convergence and avoid oscillations 

about the optimum solution, and 



3. The rate of convergence is very sensitive to the initial set of weights. 

These problems increase the time-consuming task of training ANNs by increasing the number 

of learning cycles and CPU time necessary for convergence and requiring additional 

trial-and-error runs to determine good optimization parameters for the particular problem at 

hand. 

In this report, we present a method for improving learning of neural networks. The 

proposed method significantly expediies the learning rate of ANNs as cornpared to the sbdard 

BP algorithm, does not require the selection of optimization parameters, and its overall 

convergence properties are much less sensitive to the initial set of weights chosen to start the 

learning process. Improved neural network learning is obtained by applying the well-known 

unconstrained nonlinear optimization method of conjugate gradients' (CGs) to minimize the 

prediction error. Unlike the BP algorithm which minimizes the prediction error by moving 

along its gradient direction and is not guaranteed to converge,' the method of CGs moves along 

the conjugate directions and is guaranteed to obtain the minimum of a quadratic function, apart 

from round-off errors, in a finite number of steps.' For functions that are not quadratic, which 

is the case for the prediction .error of multilayer neural networks with sigmoid mapping 

functions, the process is iterative. In the proposed method, the gradient calculations performed 

by the BP algorithm, as it propagates the prediction error from the output to the input nodes of 

the network, are used to determine the conjugate directions along which the weights are 

adjusted. In addition to having better convergence properties and being less sensitive to the 

initial set of weights than the gradient-descent-based BP algorithm, the method of CGs provides 

a systematic way to determine and to dynamically update both the learning and momentum 

parameters at each iteration. By dynamically updating these parameters the method of CGs 

avoids' the phenomenon of premature saturation of network nodes that is often 'associated with 

neural network training via the BP alg~rithm.'~~" In this report, we also describe the reasons 

for the 'occurrence of the premature saturation of the nodes and provide suggestions for 

modifying the BP algorithm to avoid the occurrence of this undesirable phenomenon. To 

demonstrate the advantages of the proposed CG method over the standard BP algorithm we 

compare the two methods in training a multilayer feedforward perceptron to classify transient 



events in nuclear power plants. However, the method is general and can be used to expedite 

learning for all applications of neural networks. The database of transients used for training the 

network is generated through the full-scale operator training Midland Nuclear Power Plant Unit 

2 (MNP-2) simulatorI2 which allows for a realistic representation of all' major systems and 

operating condition of a pressurized water reactor (PWR). 

The architecture of ANNs, the standard BP learning algorithm and its major drawbacks 

are briefly described in Sect. 11. In Sect. 111, we discuss the method of CGs, show how it is 

used within a neural network context, describe the one-dimensional search used to dynamically 

update the learning parameter, and show that the method of CGs provides a systematic approach, 

for dynamically updating the learning and momentum parameters of the BP algorithm. In Sect. 

IV, we describe the construction of the database of transients, i.e., the set of input-output 

training data, through the MNP-2 simulator and the architecture of the neural network used in 

modeling the relationships between plant parameters and transient events. The comparison of 

training a neural network with the proposed method versus the standard BP algorithm and the 
b 

diagnosis capability of the trained network is presented in Sect. V, followed by a summary and 

conclusions in Sect. VI. 

11. ARTIFICIAL NEURAL NETWORKS AND THE BACKPROPAGATION 
ALGORITHM 

In this section we briefly summarize the characteristics of feedforward multilayer neural 

networks and describe the standard BP learning alg~rithm,~ which is generally used to train 

neural networks. 

A. Artificial Neural Networks 

Artificial neural networks can be described as nonlinear modeling systems where . 

continuous input vectors are mapped through the network into continuous output vectors. For 

nuclear power plant transient event classification, each element of the input vector corresponds 

to a measured plant parameter, while each element of the output vector represents a particular 



transient event. Neural networks are composed of many nonlinear computational elements or' 

nodes arranged in patterns reminiscent to biological neural nets. The nodes of feedforward 

ANNs are generally arranged in L layers, with L 2 3, where information flows from nodes 

located at the first or input layer to nodes located at the L-th or output layer through the L-2 

hidden layers. Figure 1 shows a typical architecture of a feedforward three-layer, .L=3, network 

with one hidden layer where each layer is composed of Je (4 = 1,2,. . . ,L) nodes. In Fig. 1, each 

one of the J, nodes of the input layer receives a s  input one of the J, elements xi1' (i = 1,2,. . . , J,) 
of the input vector, which are passed unaltered and serve as the output values of the input layer 

nodes. The nodes of the hidden and outp'ut layers serve as nonlinear transfer functions mapping 

a multidimensional input 'received from nodes of the immediately preceding layer to a 

one-dimensional output xy (j = 1,2,. . . ,J,; I =2,. . . ,L). Each output of the nodes located in the 

input and hidden layers are distributed to the nodes of ,the immediately following layer through 

weighted connections, while each one of the JL outputs (j = 1,2,. . . ,JJ of the output layer 

corresponds to one element of the output vector. 

The most widely used transfer function in ANNsis the sigmoid f~nction.~ The sigmoid 

function mapping or activation level of the output $ of the j-th node in the l-th layer, with I 

> 1, in Fig. 1 is given by 

Here If:' denotes a linear weighted sum of the outputs i:-" (i= 1,2,. . . ,J,.,) of the immediately 

preceding layer plus a threshold 8': of the j-th node in 4-th layer 



Output 
Layer 

Hidden 
Layer 

Input 
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Fig. 1. A ~ y ~ i c a l  Feedforward Three-layer Artificial Neural Network 



where ufl is the weight connecting the output of the i-th node in the (I-I)-th layer to the j-th 

node in the t-th layer. 

B. The Backprouacration Algorithm 

Before an ANN can be used to predict the output associated. with an input pattern, it 

needs to learn or be trained from an existing database consisting of pairs of input-output 

patterns. Given a set of P teaching patterns, where pattern p @ = 1,2,. . . ,P) is composed of 

inputs 4; (i= 1,2,. . . ,J,).and target outputs h (j = 1,2,.:. ,JJ, neural network learning is obtained 

by adjusting the connecting weights di) of the network such that the prediction error Ep between 

the network estimated output (j = 1,2,. . . ,J3 and the target output k, for all P patterns, is 

minimized. In general, the thresholds $ are also adjusted, but since the thresholds can be 

treated as weights with constant -unit inputs we restrict our analysis to the adjustment of the 

weights 4) and assume that the prediction error is a function of the.weights only, i.e., E,, = 

l$(y).- In the standard BP algorithm, which is by far the host widely used method for training 

feedforward multilayer neural networks, the error E, for an input-output pattern p is defined as 

the mean square differed between b, and c) 

and th'e total cumulative prediction error E to be minimized is, given by 



The standard BP algorithm popularized by Rumelhart et al.6 is basically a gradient 

descent algorithm for minimizing the prediction error E of Eq. (4) in an iterative fashion. At 

each iteration, the gradient VE is recursively calculated by propagating partial derivatives of E 

backwards, i.e., from the output to the input nodes, and adjusting the weights proportional to 

the negative gradient direction until a convergence criterion is satisfied. The BP algorithm is 

briefly summarized in the following four steps: 

1. Randomly select initial values in the range [-1,1] for all weights and set the 
- 

iteration counter k= 1. 

2. Present P input-output' patterns to the network and calculate the differences 

Q tpj - xpj @ = 1,2,. . . ,P; j = 1,2,. . . ,JJ. Stop if the convergence criterion 

I tpj - x: I < r is satisfied; otherwise continue to step 3. 

3. Compute the components of the gradient VE(w3 recursively, for iteration k, 

starting at the nodes in the output layer and working backwards to the nodes in 

the input layer. To simplify the notation we suppress the iteration subscript k 

until step 4. A component of VE(w) corresponding to weight $ connecting the 

i-th node in the (0-1)-th layer to the, j-th node in the 0-ch layer is given by, 

P 

- -  (I) 0-1) aE - -C ljpj Xpi . 
p-1 awji 

If the 0-th layer is the output layer, i.e., Q =L, then 



and for any node% a subsequent hidden layer, i.e., 1 < l < L, . .  

4. Update the weights wk+, = wk + Aw, after iteration k, set. the iteration counter 

k=k+ 1 and return to step 2. In the standard BP algorithm the change in weights 

Aw, after the first iteration is given by 
- . 

.- .  

where 7 and a are constant parameters known as the learning and momentum 

parameters, respectively. 

The major drawbacks' of the BP algorithm are related to the well-known weak 

convergence charactpristics of the gradient descent method in which BP i s  based. First, the 

method of gradient descent is affected by the contour of the error-surface in the weight-space. 

The more skewed the curvatures of the space, the more the search directions oscillate across the 

ideal path toward the minimum. In addition, the' rate of convergence of the gradient descent 

method is proportional to the norm of the gradient 1 VEI . 9  Therefore, gradient descent makes 

increasingly slow progress the closer it gets to the solution. 

The rate of convergence of the BP algorithm depends significantly on the values used for 

the learning parameter 1) and the momentum parameter cr. For regions in weight-space far away 

from the optimum and for error surfaces with broad local minima, a large value of 1) will result 
. .  . 

in larger changes in the weights yielding a more rapid convergence. ' However, for regions in - ,  

weight-space close to the optimum and for problems with steep narrow minima, a small value 

of q must be chosen to avoid oscillations about the optimum solution. The momentum parameter 

a, generally chosen between 0 and 1, is the coefficient of Aw,, which provides a sort of 

momentum in. the weight-space by including the effect of past weight changes on the current 



direction of m~vement.~ The momentum term ar Aw,, accelerates convergence in regions of 

weight-space with relatively constant gradient and oscillatory gradient directions.I3 The optimum 

values for 7 and a depend on the problem being solved and other than a trial-and-error 

experiments, the standard BP algorithm does not provide a general prescription for selection of 

optimum values for these two parameters. 

Another convergence drawback of the standard BP algorithm is the occurrence of the 

phenomenon known as premature "saturation" of the network For certain initial 

values of the randomly selected weights determined in the first step'of the BP algorithm, the 

output values xj" obtained through Eq. (I), for both hidden and output nodes, may prematurely 

saturate to 0 or 1 within a few iterations of the algorithm. When this phenomenon occurs, the 

values of 6: in Eqs. (6) and (7) become very small and each iteration of the algorithm produces 

very small changes in the values of the weights and a negligible move in the direction of the 

minimum. This behavior persists for a large number of iterations or training cycles until the 

output values x y  recover from their saturated condition and the weights start moving towards 

the direction of the minimum. The effect of the premature saturation of the network nodes is 

an increase in the number of training cycles required for convergence of the BP algorithm. 

Hence, the sensitivity of the overall convergence of the BP algorithm to the initial random 

selection of weights will increase the average number of training cycles and may require 

additional trial-and-error runs to find an appropriate initial set of weights that speeds-up 

convergence. 

Our analysis shows that the process of premature saturation of the network nodes can be 

divided into three stages: beginning of saturation, saturation plateau, and recovery from 

saturation. The first stage, beginning of saturation, corresponds to the very first few iterations 

of the BP algorithm where the learning term -7 VE(w,J "freezes" very quickly at very small 

absolute values. Saturation occurs when the randomly selected weights places the starting point 

of the BP algorithm in a region of the weight-space that has skewed error-surface. The 

skewness of the error-surface causes some components of the gradient VE(w,J in Eq. (8) to 

change signs after a few iterations of the BP algorithm. Since the momentum term cr Aw,-, in 



Eq. (8) represents the "memory" of previous directions of movement, some of its components 

will have signs that are opposite to the components of -q VE(wJ. Opposite signs in some 

components of -VE(wJ and Aw,, when the absolute value of these components of a Aw,-, are 

larger than the absolute value of the corresponding components of -q VE(wJ will cause some 

components of the change in weights Aw, to be in the "wrong" direction, i.e., opposite to the 

negative gradient -VE(wJ. Because at the early stages of the algorithm the components of Aw, 

are of the same order of magnitude as the components of w,, the absolute value of the 

components of wk+, = w, + Aw, could rapidly increase in the "wrong" direction. The rapid 

increase of w,,, in the "wrong" direction would persist for a few iterations causing a quick 

saturation of the activation level of the output nodes x y  in Eq. (1) to values close to 0 or 1. 

As a consequence of the saturation of the output nodes, the values of 6:' in Eqs. (6) and (7) 

become very small, since they are proportional to x:" (1 - x D ,  causing the learning term -7 

VE(w3 to "freeze" very quickly at very small absolute values. We should also note that the 

"wrong" changes in the weights at the first stage of the process of saturation could have the 

undesirable effect of causing the prediction error E in Eq. (4) to increase. 

The second stage of the process of premature saturation of the network nodes, the . 

saturation plateau, corresponds to the iterations of the BP algorithm where the weights w,,, and 

the prediction error E remain practically constant. By the end of the first stage, the 

contributions of -7 VE(wJ to the "correct" changes in w, are negligible, while the magnitude 

of the contributions of a Aw,-, for the "wrong" changes in w, have also decreased to a negligible 

value from its initial large value. Throughout the second stage of the saturation process, the 

value of a An,, continues to decrease at every iteration of the BP algorithm. Therefore, the 

net contribution of the two terms, -7 VE(wJ and a Aw,,, is small in comparison with the 

absolute value of w,, causing both the weights w,+, and the prediction error E to remain 

practically constant. This behavior persists for a large number of iterations until the network 

starts to recover from saturation initiating the third and final stage of the saturation process: The 

recovery from saturation corresponds to the end of the process of premature saturation where 

the weights w,,, start to change in the "correct" direction allowing the prediction error E to 

decrease. The recovery from saturation starts when after a number of iterations of the BP 



algorithm, the absolute value of the components of a Awk-, have decreased enough to become 

smaller than the absolute values of the components of -r) VE(w,J. From this point on, the net 

changes in w,+, will be in the "correct" direction, i.e., the opposite direction of the local 

gradient, which allows for the output nodes xy in Eq. (1) to recover from their saturated 

activation levels. As a consequence of the recovery from saturation of the output nodes, the 

values of 6: in Eqs. (6) and (7) start to increase, causing the learning term -r) VE(w,J to 

recover from its "frozen" state acquired during the beginning of saturation. During this stage, 

the magnitude of the absolute value of the components of -r) VE(w3 increase very slowly at each 

iteration of the algorithm until the network nodes have completely recovered from saturation 

causing the weights wk+, to start approaching their correct values which, in turn, allows for the 

prediction error E to start decreasing. The larger the difference between the absolute values of 

the components of -7 VE(w,J and a Awk-, at the beginning of saturation are, the longer is the 

recovery process from saturation. 

Numerous schemes have been proposed to speed up the convergence of the BP algorithm 

for training feedforward multilayer neural networks. Basically, the proposed schemes can be 

grouped into two categories: algorithms based on  heuristic^'^^".'^-^^ and algorithms stemming 

from nonlinear optimization  technique^.'^.'^-" The first category of algorithms, based on 

heuristics, uses empirical adaptation techniques to dynamically update the learning and 

momentum  parameter^,".'^-'^ as well as the slope of the sigmoid function."' In spite of the fact 

that these heuristic schemes have been able to speed up the convergence of the standard BP 

algorithm for particular problems, their heuristic formulation does not guarantee an increase in 

the rate of convergence for other problems. The second category of algorithms, based on 

nonlinear optimization techniques, includes algorithms based on one-dimensional searches for 

dynamically updating the learning parameter,'' conjugate gradient methods that use different 

techniques for determining the conjugate directions and performing the one-dimensional 

s e a r ~ h , ' ~ ~ ~ ~  Newton and Quasi-Newton methods with different Hessian matrix  formulation^,'^^^^^^^ 

and extended Kalman Filter  technique^.^^.^^ These algorithms have produced great reductions 

in the number of iterations necessary to train feedforward multilayer ANNs, however, some of 

these approaches require complex and costly calculations at each iteration which offset their 

advantage. 



In this report we propose to use the unconstrained nonlinear optimization method of 

conjugate gradients developed by Fletcher and ~eeves' to improve neural network learning. 

Here, the one-dimensional search for the dynamic calculation of the learning parameter is 

performed by combining the golden section ruleZS with a cubic interp~lation.~~ The algorithm 

is simple to implement, has reasonable computational costs, and has better convergence 

properties than gradient descent methods. 

The method of conjugate gradients is a well-known quadratically convergent gradient 

method for locating an unconstrained local minimum of a function of n variables.' The method 

is iterative and for quadratic functions it is guaranteed .that the minimum will be located exactly, 

apart from rounding errors, in a maximum of n iterations. For functions that are not quadratic, 

which is the case for the prediction error E(w) in,Eq. (4), the method is based on the current 

local quadratic approximation to the function which causes the search process to be iterative 

rather than a n-step process, and a test of convergence is required. As the function approaches 

the minimum its approximation of a quadratic function becomes more realistic causing the 

method to converge faster. This is in contrast with the BP algorithm whose rate of convergence 

decr&ses as the minimum is approached. 

A. The Coniugate Gradient Algorithm 

The method of conjugate gradients obtains the position of the minimum w* of a convex 

quadratic function E(w), with w E W, through a sequence of approximations w,, w,, . . . , w, such 

that w,, = w*. Starting from a randomly selected initial position w,, we arrive at the next 

position wl = w, + 7, po by moving along the conjugate direction p, an amount 70, where vo 
minimizes E(wo + 7 p,) with respect to 7. This sequence is repeated until the position of the 

n-1 

minimum w, = w, + 7, is obtained, where (k=O, 1 ,. . . ,n-1) are linearly independent 
k=O 

conjugate vectors and each scalar 7, (k=O, 1, ... . ,n-1) minimizes E(wk + 7 pd with respect to 7 



at corresponding positions w,. In this report, the one-dimensional minimization of E(w, + q pa 

is iteratively obtained by combining the golden section ruleZS with a cubic interp~lation~~ and the 

sequential generation of the conjugate search directions a, are obtained through the algorithm 

developed by Fletcher and  reeve^.^ 

The following seven steps summarize the developed conjugate gradient-based algorithm 

for training feedforward mullilayer neural networks. The algorithm is iterative and at each 

iteration it requires information of the gradient VE, which is obtained just as in the BP algorithm 

described in Sect. II.B, to calculate the conjugate directionsFk. The seven steps are as follows: 

1. Randomly select initial values in the range [-I, 11 for the weights w and set the 

iteration counter k = 1. 

2. Present P input-output patterns to the network and calculate the differences 
Q tpj - xpj (p= 1,2,. . . ,P; j = 1,2,. . . ,JJ. Stop if the convergence criterion 

I t6 - $) )l < <e is satisfied; otherwise continue to step 3. 

3. Compute the gradient gk = VE(w3 as in the BP algorithm. 

4.. Compute the conjugate direction p, as follows: 

g ' g, 
y - l  ; for k > 1 

cck = c-, gk-1 

-g1 ; for k = l  

5. Obtain q, which minimizes E(w, + q pa with respect to q through a 

one-dimensional search. 



6.  Update the weights wk+, = wk + Aw,, where the change in weights Aw, is given 

by 

7. Return to step. 2 and update k as follows: if k<n set the iteration counter 

k=k+l,  otherwise if k=n set k=l. 

The developedkgorithm is similar to the BP algorithm. The firstthree steps are essentially the 

same as in the BP algorithm. Steps 4 and 5 corresponding to the calculation of the conjugate 

directions p,and the learning parameter qk, respectively, have no equivalent steps since in the 

BP algorithm the gradient directions gkare used and the learning parameter is fixed. The weight 

updates in step 6 and the iteration counter update in step 7 are equivalent to step 4 in the BP 

algorithm. The one-dimensional minimization search performed in step 5 requires attention. 

If a balance between' accuracy and computational speed is not achieved, the time spent evaluating 

the value of. the prediction error function E(wk + q p,J during the iterative process of finding 

qk may dominate the overall time of neural network learning. Here, this balance is attained by 

incorporating the golden section rule with a cubic interpolation. 

B. The One-dimensional Search 

Analytical and iterative one-dimensional search techniques can be used to find qk which 

minimizes E(% + q PJ with respect to q, with E assumed to be unimodal. Analytical 

one-dimensional searches assume that E can be approximated by a polynomial of degree M and 

require at most M+1 function evaluations. In feedforward neural networks, a function 

evaluation corresponds to presenting the P input patterns to the network and evaluating E in Eq. 

(4). Although fast, the accuracy of analytical techniques depends on the function evaluations 

being performed in a region close to the actual minimum q; . Iterative one-dimensional search 

techniques involve sequential function evaluations where at each iteration the search interval in 

the q-line containing rl; is reduced. The main disadvantage of iterative techniques is that to 



achieve reasonable accuracy in the location of q; they require a large number of function 

evaluations. 

In order to balance accuracy and computational speed in the one-dimensional search 

performed at each iteration of the conjugate gradient algorithm, we combine the iterative 

golden-section algorithm2' with the analytical cubic interpolation technique.26 The golden-section 

technique is used first to determine lower and upper values of the search interval in which is 

located, after which, a cubic function of q is fitted to obtain qk as an estimate to t); . The lower 

t)' and upper qu values of the search interval are obtained by sequentially evaluating and 

comparing the prediction error function E(wk +- t) pk) at t) = t)' (i = 1,2,. . .) defined by the 
... 

golden-section rule, 

with 

until the search interval [q'-2=t)',t)i=qu] contains $; . The search interval is partitioned again 

into a smaller interval using the golden-section rule until a predefined precision is obtained, after 

which a cubic function of t) is fitted in the res;lting interval and t), is obtained as an estimate 

of q; . Here, the basic step Ck in Eq. (12) is determined at each conjugate gradient iteration k, 

so that in the regions in weight-space where the norm of the gradient I VE(wk) 1 is small the step 

S; is large and vice versa. 

C. Comparison of Conjugate Gradient and Bacbro~agation 

Although the weight update defined by Eq. (10) in step 6 of the CG algorithm seems 

different than the weight update defined by Eq. (8) in step 4 of the BP algorithm, they are 

completely equivalent. Furthermore, the CG algorithm provides dynamic updates for both 



completely equivalent. Furthermore, the CG algorithm provides dynamic updates for both 

learning parameter 7 and momentum parameter a used in the BP algorithm. To determine the 

equivalence between the two equations and identify 7 and a in the CG framework we substitute 

F, of Eq. (9), for k> 1, into Eq. (10) and use the fact that A-, =Awk-, / vk-, to obtain 

If we now compare Eq. (13) with Eq. (8) we may identify the learl~ing parameter and 

momentum parameter a of the BP algorithm as the following terms of the CG algorithm 

For the first iteration of the method of CGs, i.e., k= 1, and for all iterations that are multiples 

of n+ 1, where n is the dimension of the weight space, the momentum parameter in the CG 

algorithm is set to zero. Therefore, except in these cases the expressions used to update the 

weights at each iteration are equivalent in the two methods. The difference is that the CG 

method provides a systematic way to determine both the learning and momentum parameters 

which are dynamically updated at each iteration. This systematic approach eliminates the need 

for trial-and-error runs used in the BP algorithm to obtain reasonable values of q and cr such that 

'-the algorithm has a good rate of convergence and avoids oscillations about the optimum. 
. .. . . 

To demonstrate the advantages of the method of conjugate gradients described in Sect. 

111, we train a feedforward multilayer neural network to classify transient events of a nuclear 
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power plant. The classification problem we select is the same one used by Reifmiin and ke2'  

in which the information-theoretic entropy minimax algorithm2* was applied to generate patterns 

associated with various plant transients. In that formulation, the patterns were cast as "if.. . then 

. . . " diagnostic rules that were modularized in a two-level hierarchical knowledge base structure 

for the anti-core melt safety function class.29 The first level of the structure was represented by 

a set of rules that characterized challenges to each of the four safety functions, reactivity control, 

primary inventory control, primary pressure control, and primary heat removal, associated with 

the anti-core melt class. The second level of the structure was represented by four sets of rules 

each corresponding to one of the four safety functions of the first level.   he second level rules 

characterized basic transient events whose occurrence would challenge the associated safety 

function. Here we concentrate on the classification of the three basic transient events whose 

occurrence would challenge the primary heat removal safety function. The three transients are 

described in Table I. 

TABLE I. Three Transient Events that Challenge the Heat Removal Safety Function 

A. Transient Database 

Transient Event 

1. Feedwater pump or booster pump trip 

2. Feed flow transmitter fails high 

3. Turbine control valve fails closed 

The inductive learning process of training a neural network requires the existence of a 

broad and representative database of examples. To construct a realistic transient database for 

the three transients described in Table I we used a subset of the MNP-2 simulator12 runs 

Transient Description 

Causes an immediate trip of the selected 
feedwater pump or feedwater booster 
Pump 

Causes the feedwater transmitter to 
transmit a higher flow signal to the 
control system 

Causes the turbine control valve to be 
closed to the selected desired position 



simulator representing all major systems of a PWR plant and the control room board 

instrumentation. Each one of the three transient events occumng separately, i.e., assuming 

single failures, was simulated on the MMP-2 simulator a dozen times. For each one of the 12 

simulations of an event, a different combination of failure severity and initial conditions, e.g., 

different initial power level and fuel bumup, from a steady-state condition was used. Each 

initial condition of the power plant is associated with a different set of plant parameter values 

that permit the construction of a broad database. This wide-ranging representation of plant 

parameters in the database are reflected in classification patterns capable of identifying the 
-. - 

transients independently of the state of the plant. Twenty plant parameters, f, ,f2,. . . ,f2,, were 

arbitrarily selected from a set of signals throughout the plant that are sent to the control room 

panel. These 20 plant parameters that were used to characterize the three transients are listed 

in Table 11. 

TABLE 11. List of Plant Parameters 

I 
fl = quench tank pressure (MPa) 
f2 = quench tank water level (m) 
f3 = reactor coolant system hot- and cold-leg A temperature difference (K) 
f4 = reactor coolant system hot- and cold-leg B temperature difference (K) 
f, = pressurizer total pressure (MPa) 
f, = pressurizer water level (m) 
f7 = pressurizer total pressure and water level ratio (MPaIm) 
f, = reactor power (% full power) 
f9 = steam generator loop A water level (m) 
flo = steam generator loop B watcr level (m) 
fll = steam generator A exit pressure @Pa) 
f12 = steam generator B exit pressure (MPa) 
f13 = high-pressure turbine throttle pressure (MPa) 
f14 = high-pressure turbine exhaust pressure (MPa) 
fl, = pressure difference across feedwater loop A control valves (MPa) 
f16 = pressure difference across feedwater loop B control valves (MPa) 
f17 = feedwater loop A inlet head pressure (MPa) 
f18 = feedwater loop B inlet head pressure (MPa) 
f19 = letdown water flow (kgls) 
f,, = makeup water flow (kgls) 



Here we also select the first 40 s after the start of the transient as the time range for 

 diagnostic^.^^ Similarly, the dynamic behavior of each of the three transients over the 40-s time 

interval is obtained by converting the 20 plant parameters fi (i = 1,2,. . . ,20) of Table I1 into the 

time rates of change Af,/At at three arbitrarily selected discrete times, 10, 25, and 40 s. Thus, 

each simulation of a transient contributes three data points to the database. The entire transient 

database used contains 108 data points'(three transient types x 12 simulations of each transient 

type x 3 time rate of change for each simulation) where each of the three transient events is 

represented by 36 entries. 
- - . . . . 

Before the time rates of changes AfilPt are used as input variables to the neural network 

they need to be scaled to a similar range in order to avoid unnecessary distortions in feature 

space which strongly affects the rate of convergence of ANNs. If the input variables differ by 

orders of magnitude, the weights may have to acquire arbitrarily large or small values which will 

require a large number of iterations before the sigmoid function provides the desired output. 

Here each input Afi/At, (i= 1,2,. .. ,20), to the network is normalized to a [0, 11 range with 

respect to the maximum time rate of change (AGlAt), of the corresponding variable, where the 

values of (AfJAt), are obtained from the 108 data points of the transient database. 

B. Neural Network Architecture 

- The overall definition of the neural network architecture is, in general, tightly coupled 

with the pattern recognition problem at hand. For instance, for nuclear power plant transient 

classification, the number of nodes at the first layer or input layer is generally equal to the 

number of inputs to the network and corresponds to the recorded plant parameters, while the 

number of nodes at the last layer or output layer generally dorresponds td the number of possible 

transient types. mere is' not, however, a prescription for determining the number of nodes in 

the interniediate or hidden layers or even the number of hidden layers of a neural network. 

Lippman's7 interpretation of neural networks as classificatory devices that partition a 

multidimensional space spanned by the input variables provides some insight to the topology of 

the hidden layers. One hidden layer is sufficient to define convex regions in hyperspace where 

the nodes of the first hidden layer correspond to the decision boundaries or hyperplanes that 



partition the multidimensional space. A second hidden layer is necessary only to define 

disconnected and. nonconvex regions in the hyperspace where the nodes of the second hidden 

layer correspond to convex regions. 

Since the results obtained by Reifman and Lee indicate that the transient database for the 

three transient events of Table I can be successfully partitioned by convex regions in the 

multidimensional space spanned by the 20 plant parameters of Table 11, we chose a network with 

three layers, one input, one hidden, and one output layer. Our objective here is not to choose 

- the optimal network architecture but to show-that the proposed conjugate gradient method -.- 

inlproves and accelerates network learning in a reasonably chosen architecture. The input and 

hidden layers have 20 nodes each, representing the normalized time rate of change for the 20 

plant parameters illustrated in Table 11, and the output layer has three nodes representing the 

three transient events illustrated in Table I. The target values tpj, (j = 1,2,3), of the output nodes 

for each one of the three transients is illustrated in Table 111. For example, when the normalized 

time rate of change for the 20 plant parameters inputted to the nctwork corresponds to the 

second transient, feed flow transmitter fails high, the desired output or target values tpj of the 

network representing the transient are $,=0.1, $,=0.9, and $,=O.l for nodes 1, 2, and 3, 

respectively. The values of 0.9 and 0.1 are used instead of the binary values of 1 and 0, 

respectively, because the weights would have to acquire very large absolute values for the 

sigmoid function in Eq. (1) to reach the extreme values of 1 and 0.6 

TABLE 111. Target Values for Three Output Nodes Corresponding to the 
Three Transient Events 

Transient Event 

1. Feedwater pump or booster pump trip 

2. Feed flow transmitter fails high 

3. Turbine control valve fails closed 

Target Values for the Output Nodes 

1 

0.9 

0.1 

0.1 

2 

0.1 

0.9 

0.1 

3 

0.1 

0.1 

0.9 



V. NEURAL NETWORK TRAINING AND DIAGNOSIS CAPABILITY 

With the conjugate gradient algorithm discussed in Sect. I11 and the neural network 

architecture described in Sect. IV.B, we have trained the network to recognize patterns of the 

three transient events illustrated in Table 111. We present the learning curves obtained by 

training the network with the proposed method and compare it with the standard BP algorithm, 

using both batch and on-line presentation of the transients in the database. We discuss the effort 

we have made to validate the adequacy of the trained network by using it to diagnose transient 
- - 

events not used in training. - 

A. Neural Network Training 

Given the transient database of 108 data points, the neural network described in Sect. 

1V.B was trained for numerous training session where at each one of the training sessions the 

network started from a different set of initial weights, i.e., a distinct position in weight-space. 

Because a single training .session could take more than 6.0 h of CPU time in a SPARC 

Workstation 2, we limited our experiments to tens instead of hundreds of training sessions. 

Therefore, we present here representative learning curves instead of average results over the 

number of tiaining sessions. 

We compare the proposed CG method with the standard BP algorithm using both the 

"batch" version of BP, where the gradient is accumulated over the whole training set, and then 

weights are updated and "on-line" BP, in which the weights are adjusted after each pattern 

presentation. The comparisons are performed by constructing "learning curves" where the 

prediction error E in Eq. (4) is plotted against the number of learning cycles, where each cycle 

consists of the presentation of the 108 data points. For all three cases, batch-BP, on-line BP, 

and CG, presented here a convergence criterion E = 0.03 was used. For the two versions, batch 

and on-line, of the backpropagation algorithm the values of the learning parameter 7 and 

momentum parameter a parameters were fixed at 0.1 and 0.9, respectively, for all runs. These 

are the most frequently used values for 7 and cr at the beginning of trial-and-error runs to 

determine their optimum values. We did not attempt to determine their optimum values, i.e., 



the one that trains the network in the smallest number of learning cycles, for each set of initial 

weights due to the large CPU time required for each training session. 

Figure 2 shows representative learning curves obtained by training the neural network 

with the batch BP, the on-line BP, and the CG algorithms. By training the network with the 

proposed CG algorithm, convergence, i.e., I t, - x$ I < 0.03 for all j = 1,2,3 and p = 1,2,. . . ,108, 

is achieved after 804 learning cycles while for the batch BP and the on-line BP algorithms 

convergence is achieved after 27,160 and 36,275 learning cycles, respectively. Figure 2 makes 

clear the fact that both batch and on-line versions of the backpropagation algorithm, which are 

based on the method of gradient descent, make very slow progress as they get closer to the 

minimum. This is exactly where the quadratically convergent conjugate gradient method excels, 

since the weight surface is expected to become increasingly quadratic as the minimum is 

approached and the conjugate directions provide improved orientation to the search directions. 

Hence, the tighter the error criterion E is, the better is the performance of the proposed 

conjugate gradient algorithm as compared with the standard backpropagation algorithm. For 

instance, in a different experiment where the error criterion E was set to 0.81, the CG algorithm 

converged in 1,152 learning cycles, while neither one of the two versions of the BP algorithm 

converged within 100,000 cycles. 

.The CPU time per iteration is, however, larger for the CG method. As described in 

Sect. 111, the conjugate gradient approach requires a one-dimensional search to obtain the 

optimum learning parameter or step size qk, i.e., the step size q that minimizes the prediction 

error E in the conjugate direction p, at each iteration k. The one-dimensional search is 

performed here, as described in Sect. ITT.B, through the combination .of the golden section 

algorithm with a cubic interpolation which requires additional function evaluations, i.e., forward 

passes through the network. However, the larger CPU time per iteration does not offset the 

advantages of the method of conjugate gradients due to the much larger reduction in the number 

of iterations. In the experiment illustrated in Fig. 2, using a SPARC Workstation 2, the 

proposed CG method converged in less than 20% of the CPU time used by the batch BP 

algorithm, and in less than 10% of the CPU time used by the on-line BP algorithm. On-line BP 

requires more CPU time than batch BP because the weights are updated at each pattern 

presentation. These results do not imply that we could not obtain optimum values of q and 
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Fig. 2. Representative Learning Curves Obtained by Training the Network with the 
Method of Conjugate Gradients and with Both Batch and On-line 
Backpropagation Algorithms 
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a! that would allow the BP algorithm to converge in less CPU time, although in larger number 

of learning cycles, than the CG algorithm. But a number of BP trial-and-error runs would be 

necessary to obtain such optimum values which would result in a much larger cumulative CPU 

time than the CPU time for one CG run. Similar behavior in CPU time and number of 

iterations to converge was observed in other comparative experiments with the CG algorithm 

yielding improved convergence performance in comparison with the standard BP algorithm with 

tighter convergence criterion. 

In Sect. II.B we describk the phenomenon of premature saturation of the network nodes 

that is generally observed in neural network training with the BP algorithm. For a given set of 

initial weights, the BP algorithm may reach a region in weight-space where after a few first 

iterations the components of the momentum term a Aw,, have larger absolute value and opposite 

sign than the components of the learning term -q VE(wJ causing the network to saturate. In our 

experiments we also observed this phenomenon for certain sets of initial weights. By training 

the network for the same problem, with the same parameters q =O. 1 and a =0.9 .but a different 

set of initial weights, the batch BP algorithm experienced premature saturation of its nodes as 

illustrated by the learning curve in Fig. 3. The premature saturation of the network is indicated 

by the flat plateaus of the learning curve at relatively high values of the prediction error E. The 

flat plateaus of the learning curve are characteristic of the first and second stages of the 

saturation process of the output nodes as described in Sect. 1I.B. The flat plateaus also 

characterize the early phase of the third stage, recovery from saturation, when the various output 

nodes start to recover from their saturated activation levels of 0 or 1. The sharp decrease in E 

about 350 and after 28,000 learning cycles correspond to later stages of the recovery from 

saturation process when one of the output nodes has completely recovered from saturation. The 

cause for the formation of the flat plateaus in the learning curve are tightly dependent on the 

saturation of the output nodes while the recovery of the network from saturation ' is 

influenced by the saturation levels of nodes in both the output and hidden layers of the network. 

Figure 4 shows the activation level of the three output nodes (j = 1,2,3) of the output , 

layer for one of the 108 patterns used to train the network corresponding to the learning curve 
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Fig. 3.  Effects of the Premature Saturation of the Network Nodes in the 
Learning Curve Experienced by Training the Network with the Batch 
Backpropagation Algorithm 
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Fig. 4. Activation Level of the Three Output Nodes for a Feedwater Pump 
Trip Event Obtained by Training the Network with the Batch 
Backpropagation Algorithm 



presented in Fig. 3. The pattern used represents a feedwater pump trip transient with target 

values &,,=0.9, G2=0. 1, and b3=0. 1. At the very first learning cycles the activation level of 

output nodes 1 and 3 diverge rapidly to very small values which characterize the first stage, 

beginning of saturation, of the process of premature saturation of the network nodes. By the 

2Oth learning cycle nodes 1 and 3 are completely saturated with xf; = and x$ = 

which characterize the start of the second stage of the saturation process, while node 2 remains 

unsaturated. The degree of saturation of the output nodes is a function of the difference between 

1-7 VE(w,J 1 and 1 ar Awt, 1 , determined at the beginning of saturation stage, when some 

components of the gradient VE(w,J change sign. The larger the difference is, the larger is the 

level of saturation of the node. At the second stage of the saturation process, all the weights 

$' connected to the two saturated nodes change very little causing the flat plateaus in Fig. 3. 

Around the 8Oth learning cycle, the absolute value of the components of a Aw,-, associated with 

node 3 become smaller than the absolute value of the components of -q VE(wd allowing the 

activation level of node 3 to start its recovery from saturation, i.e., the start of the third stage, 

as indicated in Fig. 4. By the 350-th learning cycle, node 3 is completely unsaturated causing 

a sharp decrease in the value of the prediction error E. Similarly, the recovery for node 1 starts 

around 6,000 learning cycles and is completed after 28,000 learning cycles where the activation 

level of all three output nodes are unsaturated and are close to their target values. However, 

because the convergence rate of the BP algorithm decreases the closer it gets to the minimum, 

it only converges after 48,392 learning cycles. For the other 107 patterns we observed a sinlilar 

behavior. Node 2 was never saturated, node 3 was saturated until around 350 learning cycles, 

and node 1 was saturated until around 28,000 cycles. 

The undesirable effects of the premature saturation of the network nodes could be 

eliminated from the standard BP algorithm through minor modification in the algorithm. One 

possible modification involves the selection of a small step size q at the early stages of the 

algorithm, which could then be increased later in order to speed up convergence. By selecting 

a small q at the early stages of the algorithm we would force the components of Aw, to be small 

in comparison to the components of Aw, which would avoid the premature saturation. Another 

possible modification involves the suppression of the momentum parameter a ,  i.e., set a=O, at 

the early stages of the algorithm, which could later be set to 0.9 or other value in order to speed 



up convergence. By setting a=O at the early stages of the algorithm we force the components 

of Aw, to update wk in the negative gradient direction -VE(wd, i.e., the "correct" direction, 

when the components of Aw, are of the same order of magnitude as the components of w,, and 

thus avoiding premature saturation. These two distinct modifications were implemented for the 

same initial set of weights used in Fig. 3 and succeeded in avoiding the premature saturation of 

the network nodes. In the first modification, we selected q =0.01 instead of q =O. 1 for the entire 

learning cycle. We observed no premature saturation but because of the small' step size the 

algorithm did not converge within 100,000 learning cycles. In the second modification, we set 
-.. 

. . a=O.O for the first 20 learning cycles after'which we set a=O.9. For this case, the batch BP 

algorithm converged in 24,921 learning cycles. In spite of the fact that these two possible minor 

modifications in the standard BP algorithm could be used to avoid premature saturation of the 

network nodes, they also add more complexity in the heuristic selection of q and a. 

The phenomenon of premature saturation.of the network nodes is not experienced in 

neural network training with the method of CGs. By calculating the learning' parameter qk that 

minimizes E(w, + q ak) along the,conjugate direction a,, the method of CGs forces the learning 

term -qk gk to be perpendicular to the momentum term a, Awk-, at every iteration. The 

orthogonality of these two terms causes the change in weights Aw, in Eq. (13) to always have 

its projection along the gradient g, in the negati.ve direction, i.e., the direction which minimizes 

the prediction error E; thus precluding saturation. Hence, the method of CGs not only expedites 

neural network training but also avoids the premature saturation of the network nodes. Figure 

5 shows the learning curve obtained with the method of CGs for the same problem illustrated 

in Fig. 3. The prediction error E decreases monotonically and convergence is achieved after 

725 learning cycles. Figure 6 shows the activation level of the three output nodesx:) (i = 1,2,3) 

of the output layer for the same pattern used in Fig. 4. With the CG algorithm the activation 

levels of the output nodes neve; become saturated and after 300 cycles the output nodes are 

already close to their target values. 

Figure 7 shows the values of the learning 7, and the momentum a, parameters in Eq. 

(14) calculated by the method of CGs for the 725 training cycles required to train the network 
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with the initial set of weights used in Fig. 5. These values are in contrast with the fixed values 

of ~ = 0 . 1  and (r=0.9 used in the BP algorithm. In this case, the values of the momentum 

parameter a,oscillates at each iteration of the CG algorithm with a baseline around 1.0. The 

values of the learning parameter qk also vary throughout the training process starting at small 

values and increasing towards the end of training. Perhaps a more meaningful parameter to 

present, as illustrated in Fig. 8, is the effective learning parameter or step size q ,  defined as 

the product of the learning parameter qk and the norm of the conjugate direction 1 The 

effective step size is the actual amount that the weight wk moves in weight-space along the 

conjugate direction p,. The value of the effective step size decreases at the later stages of the 

training process which indicates the necessity to better account for the quadratic nature of the 

prediction error function near the minimum. This decrease in qeR also avoids the oscillatory 

behavior that can be observed in the BP algorithm if the value of the fixed learning parameter 

q is too large causing overshooting of the minimum. 

B. Diagnosis Caaability 

The validation of the diagnosis capabilities .of the trained neural network with the 

conjugate gradient method is performed through a blind test. Two simulated transient events, 

one representing the feedwater pump trip and one representing the feed flow transmitter failure, 

which were not used to train the neural network were used for the blind test. The two events 

were simulated with randomly selected initial conditions and failure extent which allow for the 

verification of the degree of context independence or interpolation of the trained neural network. 

As the blind test was also expected to demonstrate the time-varying diagnostic ability of 

the static feedforward network, the test was designed to simulate on-line diagnostics. At every 

second, the 20 plant parameters of Table I1 are converted into their corresponding time rate of 

change which are then normalized before being fed to the 20 nodes of the input layer of the 

network to obtain the activation levels for the three output nodes. Figure 9 shows the network 

activation levels for the three output nodes during the first 40 s of the feedwater pump motor 

trip transient. Within 20 s into the transient the network is capable of correctly identifying the 

event, which is evidenced by. the fact that after 20 s the activation levels for the three output 
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nodes are very similar to the target values Gj (j=1,2,3) of 0.9, 0.1, and 0.1, respectively, 

representing a feedwater pump motor trip as indicated in the first row of Table 111. Actually, 

after 5 s into the transient the trained neural network already provides good evidence of the 

occurrence of the correct transient. 

A mild deviation from the expected results is observed between 10 and 20 s into the 

transient where the activation level of the first output node decreases as the activation level of 

the second output node increases. The activation level of the first node decreases'by the same 

amount that the second node increases such that the addition of the two activation levels remain 

constant at 1.0 and the addition of the three activation levels remain constant at 1.1. This 

behavior of the network allows us to interpret the activation levels of the output nodes as 

membership functions used in fuzzy l o g i ~ . ~ ~ * ~ l  Since each one of the three output nodes is 

associated with one of three possible transient events, the activation level of each node 

corresponds to the membership function of a given input vector of plant parameters to the 

corresponding transient event represented by the node. For example, the activation level of the 

first output node represents the membership function of a given input vector of plant parameters 

to the feedwater pump trip transient event. The closer the activation level of a node is to 0.9, 

the larger is the certainty about the occurrence of the corresponding transient event. Hence, the 

behavior of the output nodes of the diagnosis problem in Fig. 9 can be interpreted as in the 

fuzzy logic approach for transient identification, 30*31 where the increase in the membership 

function for one transient would automatically cause the membership of one or both remaining 

transients to decrease. 

The results of the blind test for the feed flow transmitter transient is illustrated in Fig. 

10. Within a couple of seconds into the transient the trained neural network is capable of 

identifying the transient as evidenced by the close agreement between the target values of the . . 

three output nodes presented in the second row of Table I11 and the results presented in Fig. 10. 

The activation levels for output nodes 1 and 3 are approximately 0.1 while the activation level 

for output node 2 is approximately 0.9 as expected. Similar blind test results were obtained 

when the network was trained by either batch or on-line versions of the backpropagation 

algorithm allowing us to conclude that, the diagnosis capabilities of the network seemed to be 

independent of the algorithm used for, training. 
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VI. SUMMARY AND CONCLUSIONS 

The developed CG algorithm used for neural network learning of nuclear power plant 

transient classification eliminates key drawbacks of the standard BP algorithm. First, the rate 

of convergence of the proposed method is much greater than the standard BP algorithm and it 

reduces both the number of iterations and the CPU time required to train the network to 

recognize patterns of the transient events. Unlike the standard BP algorithm, the convergence 

rate of the proposed method does not necessarily decrease the closer it gets to the optimum 

solution. Second, the method of CGs provides a systematic mechanism to determine both the 

learning and the momentum parameters which are dynamically updated at each learning cycle. 

This eliminates the sequence of trial-and-error runs necessary in neural network training with 

the BP algorithm to obtain optimum values for these two parameters. Finally, the method of 

CGs is less sensitive to the initial set of weights than the standard BP algorithm since the 

phenomenon of premature saturation of the network nodes is not observed in the proposed 

method. This allows for smaller variations in the number of learning cycles and CPU time 

required for training a neural network when different initial set of weights are used. 

The good convergence characteristics of the conjugate gradient method substantially 

decrease the effort involved in the time-consuming task of training ANNs. This advantage of 

the CG method is most noticeable and important for problems where the network architecture 

consists of a large number of nodes, i.e., when the optimization problem has a large dimension, 

the number of input-output training patterns is large, and a tight convergence criterion is desired. 

The proposed method, however, requires a one-dimensional search which can affect the overall 

performance of the algorithm significantly' and should be considered carefully. Considerations 

should include the trade-off between accuracy of the one-dimensional search, which could 

influence the convergence of the overall method, and the CPU time involved in the search, 

which could account for the major portion of the total CPU time. Here, a balance between 

accuracy and CPU time in the one-dimensional search is achieved through the combined use of 

the iterative golden-section algorithm with an analytical cubic interpolation. In this report we 

also describe the reasons for the premature saturation of the network nodes which often occurs 

with training via the BP algorithm and provide suggestions for modifying the algorithm to avoid 

this undesirable effect. 



Neural network training with the 'method of conjugate gradients .presented here is of 

course not limited to the classification of nuclear power plant transient events. The method is 

general and could be used to expedite the training process of other applications of ANNs in 

nuclear power operations. Future work should attempt to apply the CG method to improve 

learning of recurrent neural networks4 which try to account for time-varying nonlinearities. This 

is a rather challenging problem since recurrent networks feed the output of each node back to 

itself either directly or through other nodes which increases the difficulty in training this type 

of networks. 
- 
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